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Abstract 
This study investigates the impact of a dynamic geometry environment, GeoGebra, in enabling grade 9 students to 
explore a geometrical task related to the Euler’s line. The research subjects were grade 9 students in India and Sweden 
who had no prior experience of using dynamic geometry. Their approach to geometrical reasoning, argumentation 
and conjecture making has been analysed using Marton’s theory of variation, Pea’s theory of technology as amplifier 

and reorganizer and with Marrades and Gutiérrez categorization of proofs. Results indicate that when students of both 

countries worked on geometrical tasks in GeoGebra, they arrived at similar conclusions.  For both groups of students, 
GeoGebra played the role of amplifier and reorganiser in enabling their explorations. Further, in some of the 
construction and dragging episodes it was observed that the four functions of variation, namely, contrast, 
generalisation, separation and fusion played a significant role in developing students’ geometrical thinking. Results 

further indicate that the dynamic geometry environment (DGE) facilitated the making of conjectures and developing 

empirical proof. However, when it came to developing a deductive proof, students required adequate scaffolding.  In 

general, it concluded that students perform adequately when given investigatory problems in such an environment. They 

learn new mathematics and learn to handle the DGE at the same time. 

 

 

1. Introduction   
The fascinating discovery, namely that of the collinearity of the orthocentre, circumcentre and the 

centroid of a triangle was made by Leonard Euler in the 18th century. This result, famously known as 

the Euler line, is regarded as one of the finest results in geometry. As Sandifer [19] remarks 

At the end of the nineteenth century, triangle geometry was regarded as one of the 

crowning achievements of mathematics, and the Euler line was one of its finest jewels. 

In a paper, published in 1767, Euler details out the analysis of the triangle centres and the relationships 

between them. However his main attempt was to solve a different problem – that of constructing a 

triangle, given the triangle centres. He used Heron’s formula, elementary trigonometry (law of 

cosines) and the theory of equations to solve the problem and in the process made the observation 

about the collinearity of the three centres. Although he did not seem to consider this to be particularly 

important, it has indeed become one of the most celebrated results in geometry.   

The geometrical proof of the collinearity of the orthocentre, circumcentre and the centroid of a 

triangle and the existence of the Euler line is well within the reach of high school students. School 

geometry is usually restricted to the study of lines, angles, triangles, quadrilaterals, circles and their 

properties. However, geometrical relations such as the Euler line are considered to be beyond the 
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scope of the curriculum. The availability of dynamic geometry software, however, makes it possible 

for students to explore such results in a dynamic environment. In fact the use of Dynamic Geometry 

Environments (DGE) and their contribution to mathematics learning has been widely researched in 

the last two decades [3, 8, 10, 12 and16]. These studies have shown that dynamic geometry software, 

such as, Geometer’s Sketchpad, GeoGebra and others, support creative discoveries and mathematical 

generalizations when used in a classroom. Many studies such as [4] have also tried to address the 

cognitive transition from experimental mathematics, that is, verification and conjecturing, to 

theoretical mathematics, that is, formal abstract concepts and proof.  

In many countries across the world, such as India and Sweden, teachers do not traditionally use 

computers to demonstrate mathematical concepts or engage students in mathematical investigations. 

This is primarily because the curricula in these countries do not prescribe the use of computer 

technology for mathematics teaching and learning. Though schools and teachers have the freedom to 

use technology in their classrooms, their hesitation to do so may be attributed to lack of proper 

orientation and training. Further, in general, students are not given access to technology during 

examinations. Hence, there appears to be a lack of motivation to integrate technology in mathematics 

teaching in these countries. 

 

1.1 Purpose of the study 

In this article we shall describe how grade 9 students from two countries, India and Sweden, explored 

triangle centres, made conjectures regarding their collinearity and went on to developing a proof while 

working in a dynamic geometry environment. The study was designed to investigate the role of 

specific dynamic geometry software, GeoGebra, in enabling the students to explore the triangle 

centres. Although, culturally the two countries are different, there are similarities between the 

educational backgrounds of the students. In both countries, mathematics is largely taught as an 

abstract subject in the traditional ‘chalk and board’ manner, with little emphasis on applications. Also 

in the large majority of schools across India and Sweden, technology is hardly used for mathematics 

instruction. Even if technology is used, it is primarily for demonstration purposes and does not engage 

the students actively. Geometrical experiences of students in grades 9 in both India and Sweden, 

include properties of triangles, quadrilaterals, polygons, compass and ruler constructions, concepts of 

symmetry and congruency. The nature of the tasks posed to students at this stage is largely based on 

calculations and properties of figures. The notions of argumentation and proof are also introduced to 

students in grade 9, where they begin to reason about shapes using defined quantities and formulae.  

Thus, we find that the approaches in mathematics teaching and learning in the two countries are 

similar in terms of emphasis on paper-pencil tasks and topics studied in geometry. Hence the authors 

(the researchers in this study) felt it would be worthwhile to see how grade 9 students of both 

countries, respond to using a technology tool in exploring a geometrical relations such as the Euler 

line. Teachers of both countries who participated in the study, exchanged notes regarding their 

students’ performance in mathematics, to ensure that the students are of the similar levels of ability 

in terms of problem solving and conceptual understanding. Students in both countries underwent three 

two – hour sessions, in which they explored tasks based on three triangle centres and recorded their 

observations on worksheets. The students in both countries had no prior experience of working with 

a DGE. 

1.2 Research questions 

The objective of the study was to address the following research questions:   

1. How do students perceive geometrical constructions in a dynamic geometry environment vis-

à-vis a paper pencil environment? 
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2. How does a DGE help or hinder the process of making conjectures? 

3. How do students to make the transition from conjecture to formal proof in a DGE? What is 

the nature of facilitation required to enable the transition? 

4.  Does the DGE act as an amplifier or a reorganiser or both? 

2. Theoretical framework 

2.1 Learning geometry through dynamic visual representations 

Within the domain of mathematics, geometry is the study of shapes and space [20]. In the classroom, 

geometry is taught through a variety of representations, such as diagrams, schemes, drawings, and 

graphs. These representations are a contextual description of geometrical concepts or ideas and may 

support the process of conceptualization [21]. That is, the use of multiple representations facilitates 

student’s development of geometrical concepts. Traditionally, geometry is taught and learned in a 

pencil and paper environment and geometry textbooks at schools provide iconic illustrations. 

A conceptual understanding of geometry however requires mental imagination, since the proofs and 

derivations of formulas are based on flexibility and generalization of figures. Textbooks are not able 

to highlight the dynamic nature of geometrical figures. One may say there is a ‘dynamic void’ when 

geometry is learned through figures and diagrams in a textbook. Thus students are required to 

mentally investigate properties of geometrical objects without an external way to understand the 

related concepts, and as a result often fail to learn important concepts.  

A Dynamic Geometry Environment provides a dynamic opportunity to the learning of geometry.  It 

allows the user to perform investigations and thus affords the possibility of dynamic and visual 

representation of geometry concepts in a physical sense. Such investigatory activities are hard to 

experience in a static environment such as paper and pencil [8].  In Laborde’s view, drawing refers 

to the material entity, while figuring refers to a theoretical object [5]. This distinction between 

drawing and figuring can be viewed as:  

1. Some properties of a drawing might be irrelevant. If for example, a rhombus has been drawn 

as an instance of a parallelogram, then the equality of the sides is irrelevant.  

2. The elements of the figure have an inbuilt variability that is absent in the drawing. For 

example, a parallelogram has infinitely many drawings; some of them are squares, some of 

them are rhombuses, and some of them are rectangles.  

3. A single drawing may represent different figures. For example, a drawing of a square might 

represent a square, a rectangle, a rhombus, a parallelogram, or a quadrilateral.  

 

Obviously, is not possible to provide an adequate representation for all properties simultaneously in 

a pencil and paper environment. Fortunately, this is possible with a DGE. According to Marrades and 

Gutiérrez [15] 

DGS helps teachers create learning environments where students can experiment, observe the 

permanence, or lack of permanence, of mathematical properties, and state or verify conjectures 

much more easily than in other computational environments or in the more traditional setting 

of paper and pencil. The main advantage of DGS learning environments over other 

(computational or non-computational) environments is that students can construct complex 

figures and can easily perform in real time a very wide range of transformations on those 

figures, so students have access to a variety of examples that can hardly be matched by non-

computational or static computational environments (p.96) 
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Researchers have been particularly interested in student’s understanding of geometrical concepts 

and objects and in investigating how they react when these geometrical concepts and objects are 

represented in a dynamical geometry system. 

2.2 Theory of Variation: Dragging as a tool in a DGE 

An individual may require several inputs (other than a definition) to help form a mental image of a 

geometrical concept. For example, to help an individual understand the idea of a triangle, the teacher 

may present several drawings or pictures of triangles, expecting the learner to ‘see’ some common 

features, among all the figures, namely, three sides, three vertices etc. The same idea may be explored 

in a dynamic geometry environment by drawing a triangle and dragging one of the vertices to create 

an animation, a continuous process, through which the learner will be able to see the invariant 

properties. Extending this a little further, we may want the learner to conjecture that the sum of the 

three angles of a triangle is 180o. Presenting several triangles on paper and making them measure the 

three angles could be one way. However, in a dynamic geometry environment, the learner can drag 

the vertices of a triangle and ‘see’ (in the algebra view), that the sum remains 180o irrespective of the 

shape of the triangle. Thus, the dragging tool is perhaps the most powerful feature of a DGE as it 

allows the user to abstract an idea by observing properties of figures, which remain invariant during 

the process of variation. According to Leung [11]: 

what makes a (DGE) a powerful mathematical knowledge acquisition micro world is its ability 

to visually make explicit the implicit dynamism of ‘‘thinking about’’ mathematical (in 

particular geometrical) concepts. By implicit dynamism I mean that when engaging in 

mathematical activities or reasoning, we often try to comprehend abstract concepts by some 

kind of ‘‘mental animation’’; that is, mentally visualizing variations of conceptual objects in 

the hope of ‘‘seeing’’ patterns of variation or invariant properties. The success of perceiving 

such patterns or properties often helps to bring about understanding of the underlying abstract 

mathematical concept. 

Dragging in DGE is a much studied theme and plenty of research has been carried out to explore how 

dragging in DGE can be instrumental in helping students construct figures using their properties, 

explore geometrical problems, formulate conjectures and even proofs. Different dragging strategies 

or modalities have been investigated attempting to discover the roles that dragging can play in 

different DGE experiences [6, 7, 8, 9]. In particular, Arzarello et al. [1] identified seven dragging 

modalities (wandering, guided, bound, dummy locus, line, linked, drag test) while trying to analyse 

conjecture-making episodes by students working on a geometrical problem. Dragging has also been 

studied under the instrumentation approach (Verillon & Rabardel [23]) where the drag tool is 

scrutinized under the instrumental genesis framework. 

Leung [11] also refers to the Variation theory and observes that variation is the epistemic essence of 

the drag mode in DGE. In particular, a key purpose in most DGE dragging strategies is to discover 

invariant properties in the midst of varying components of a geometrical configuration. 

Conceptualization of invariant structures amidst changing phenomena is often regarded as a key sign 

of knowledge acquisition. These dragging strategies often involve other functionalities in DGE like 

measurement, hide/show and trace to accentuate the different patterns of variation that can bring about 

the emergence of geometrical patterns.  

Marton [13], in his work on learning and awareness, advocated that variation and simultaneity play a 

fundamental role in discernment: 

As we always act in relation to situations as we see them, effective actions spring from 

effective ways of seeing. Seeing a situation in a certain way amounts to discerning those 

aspects which are critical for engaging in effective action and taking all of them into 

consideration (focusing on them) at the same time. In order to discern a certain aspect, one 
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must have experienced variation in those aspects. There is no discernment without variation 

(Marton et al. 2004, p. 14) 

Marton et al. [13] proposed four inter-related functions (or patterns) of variation. They are described 

as follows: 

Contrast: ‘‘… in order to experience something, a person must experience something else to compare 

it with.’’ 

Generalisation: ‘‘… in order to fully understand what ‘‘three’’ is, we must also experience varying 

appearances of ‘‘three’’,…’’ 

Separation: ‘‘In order to experience a certain aspect of something, and in order to separate this aspect 

from other aspects, it must vary while other aspects remain invariant.’’ 

Fusion: ‘‘If there are several critical aspects that the learner has to take into consideration at the same 

time, they must all be experienced simultaneously.’’ (Marton et al. 2004, p. 16). 

In this article, these four functions of variation will act as pillars in helping us to deconstruct and 

make sense of the grade 9 students’ exploration of the Euler Line.  

 

2.3 DGE as amplifier and reorganiser 

A further issue when using a DGE is that of the DGE acting as an amplifier or a reorganizer of mental 

activity [17, 18]. When technology is used as an amplifier, it performs more efficiently tedious 

processes (that might be done by hand), such as computations or the generation of standard 

mathematical representations such as graphs. In this use of technology, what students do or think 

about, are not changed but can be accomplished with significantly less time and effort and with more 

accuracy. For example, the use of a scientific calculator for computations while solving problems can 

make students’ work more efficient and free from basic arithmetic errors. However, their activity and 

thinking is generally unchanged by this use of the calculator. On the other hand, when technology is 

used as a reorganiser, it has the power to shift the focus of students’ mathematical thinking. It supports 

looking for patterns, identifying invariances or making and testing conjectures. Students can focus on 

developing insight rather than on drawing and measuring objects.  

 

2.4 Theory of Cognitive Unity and Rupture 

One of the objectives of school mathematics is to enable students to engage in argumentation and to 

learn deductive proof. However, this poses a huge challenge since students often are unable to 

produce deductive proofs for geometry problems. Researchers have studied this aspect in great detail.  

Fiallo and Gutiérrez  [4] describe proof as 

any mathematical argumentation raised to convince oneself or others of the truth of a 

mathematical statement.  

They also differentiate between empirical and deductive proofs 

Empirical proofs, characterized by showing that the conjecture is true only in one or a few 

examples taken from a larger set of examples and assuming that the conjecture is also true in 

all other examples in the set.  Deductive proofs, consisting of chains of logical implications 

connecting the hypothesis to the statement of the conjecture, and characterised by the 

decontextualisation of the ideas presented.  

Fiallo and Gutiérrez [4] state that  

Conjecture-and-proof problems are a key element in learning to prove. Their solution is divided 

into two parts: first, to state a conjecture, and second, to prove that the conjecture is true. Several 
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researchers have analysed the processes of solving these problems to understand the 

relationship between students’ reasoning in both parts.  

Boero et al. (1996) propose the theory of the cognitive unity to explain possible reasons for students’ 

the success or failure in writing deductive proofs. According to them  

there is cognitive unity when the argumentations used to produce and validate a conjecture help 

to construct its deductive proof. Otherwise, there is a cognitive rupture.  

In exploring a geometrical problem students make conjectures based on their observations and 

produce empirical arguments. In order to develop the empirical argument into deductive proof they 

need to “decontextualize the argumentations to transform them into abstract deductive 

argumentations.” [4] 

The theoretical frameworks described in this section will be used to analyse 9th grade student’s 

responses to geometrical tasks and their reasoning in developing deductive proof. 

 

3. Research Methodology 

In this section, we describe the main components of the intervention done by the researchers.  We 

will focus on the student’s mathematical background, the content of the investigative task, the nature 

of scaffolding required and the nature of students’ investigations and argumentations. 

3.1 Student’s background 

3.1.1 The sample 

Twenty-two grade 9 students from India and twenty-eight grade 9 students from Sweden with similar 

mathematical ability (measured in grades) and with no prior DGE experience were selected by the 

researchers to participate in the study. A convenience sampling was done but it was ensured that the 

students of both countries had similar educational background in terms of exposure to computer use 

and mathematical concepts. Because of the similarity in the educational backgrounds and geometry 

experience, both groups of students may be considered as a single population in this study. The 

Swedish grade 9 students were selected from three ordinary community compulsory schools in 

Gothenburg.  No significant difference in performance could be observed between students from the 

three schools.  The Indian students who participated in the study were selected from three schools in 

Mumbai. These schools follow the curriculum prescribed by the State Board, which does not 

prescribe the use of technology for teaching mathematics or permit its use in examinations. The 

students who participated in this study knew how to construct the perpendicular bisectors, altitudes 

and medians of a triangle using ruler and compass but hadn’t explored the same using any geometry 

software.  

In India the students were given access to GeoGebra in a computer laboratory while in Sweden the 

students brought their own laptops. Both groups underwent three two - hour sessions during which 

they explored geometrical tasks using GeoGebra. These sessions were facilitated by the researchers 

in the presence of the teachers. The subjects of both countries had no prior experience in using 

GeoGebra. During the first session, they were familiarised with the basic tools and were assigned the 

task of constructing a square.  This was a ‘warm-up’ exercise and the reason for starting with a 

construction task was primarily to get them familiar with the difference between drawing and 

construction, as well as basic construction tools of GeoGebra such as, the point tool, line tool, circle 

tool, etc. During this process, the researchers in each country conducted a whole-class discussion with 

the students, occasionally asking questions, and facilitating their understanding from time to time. 

The construction task took up about 25 minutes of the first two-hour session. After the construction, 
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when students seemed fairly comfortable with the basic tools of GeoGebra, a worksheet comprising 

a set of investigative tasks based on the triangle centres, was given to them.  

The reason for choosing the Euler Line Investigation was students’ familiarity with properties of 

triangles and the concepts of altitudes, medians and perpendicular bisectors. They had studied these 

in their regular classes and had also constructed these using compass and ruler. However they were 

not introduced to the triangle centres. The investigation task provided students with opportunities for 

exploring the centres in detail and in making conjectures regarding their interrelationships.   

In both India and Sweden, the researcher gave general instructions to facilitate students’ 

investigations whenever required but interventions were kept to a minimum. The teachers moved 

around and helped if students faced any difficulty in using the GeoGebra tools. They did not however 

prompt answers or ‘give away’ solutions. Students’ activities with GeoGebra were filmed (without 

students). At the end of the sessions all students turned in their worksheets and the voluntary groups 

saved their screen cast movies on R’s USB stick (in two schools).  

3.2  The intervention and teaching unit 

In this section, we describe the content of the intervention tasks, the facilitation provided by the 

researchers through a guided discovery approach as well as students’ responses. The intervention may 

be divided into two parts – the square construction task and the Euler Line investigation. 

3.2.1 The square construction task 

As a warm-up exercise, the researchers (in both countries) asked students to construct a square using 

GeoGebra. Other researchers [14, 22] have explored this classic construction problem, which requires 

geometric reasoning and familiarises the user with the construction tools of DGE. Initially most 

students attempted this task through manual adjustment.  However, they soon realised that such a 

figure does not survive the ‘drag test’. A few students discovered the regular polygon tool and used 

it to construct a square. However, others considered this as ‘cheating’ as it did not require the use of 

construction tools (point tool, line tool). This prompted the researchers to ask students to construct a 

square using GeoGebra’s construction tools.  At this point, students appeared to use their prior 

knowledge of constructing a square using a compass and ruler on paper to figure out the construction 

process in GeoGebra. They recalled that perpendiculars need to be drawn at end points A and B of a 

line segment AB. Following this, arcs are needed to ensure that the sides are of the same length. When 

asked why the arc was required, one student said, “the arc is needed to mark the point on the 

perpendicular line so that the sides of the square equal the line segment AB.” They translated this 

process in GeoGebra and used the circle tool to complete the construction of the square (Figure 1). 

Any errors in the construction process were rectified using the hide/unhide or undo options. The 

GeoGebra construction required more mathematical knowledge about the properties of a square and 

circle than the paper-pencil construction.  

One student observed, “when we construct a square using compass and ruler ... (like the way our 

teacher taught us), we cannot do anything to it afterwards. But this GeoGebra square can be moved 

and changed in both position and size and even after dragging it remains a square!” Here the student 

was comparing the static paper and pencil construction with the dynamic construction on GeoGebra. 

Dragging the vertices of the square made him realise that the side lengths and orientation of the square 

may vary but the equality of the sides and the right angles remains invariant. This illustrates the “drag 

for contrast approach” which enabled students to construct a ‘robust’ square that ‘survived the drag 

test’. According to Leung [11]:  

Contrast is about seeing differences, comparing between what is and what is not, hence 

anticipating (conjecturing) what can be and cannot be (p. 6). 
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Further only after successfully constructing a robust square, which did not lose its properties upon 

dragging, did the students truly generalise the concept of the square. The “dragable” square in 

GeoGebra helped them to experience varying appearances of a square. Further, while dragging the 

vertices, they were able to separate out the fundamental properties of the square (equal sides and right 

angles) from the irrelevant properties (changing measure of sides and orientation of the square). Thus, 

in their visualization, the fundamental properties were brought to the fore while the irrelevant 

properties were pushed to the background. This illustrates separation as a function of variation. 

Finally the simultaneous experience of the varying and the invariant led to fusion and the complete 

visualisation of a square. Thus the four functions of variation -contrast, generalisation, separation and 

fusion played a key role in conceptualizing a square.  

 

 

 

 

         

 

 

 

(a)                                      (b)                                                (c) 

Figure 1: Students’ constructions of a square: (a) by manual adjustment, (b) using the regular polygon tool (c) using line 

segment and circle tools (a robust construction). 

 

3.2.2 The Euler Line Investigation 

In this section, we shall describe the investigation task based on triangle centres and the Euler Line, 

which was attempted by students after the square construction task. Students were given a worksheet, 

which included the basic definitions of the centroid, circumcentre and orthocentre followed by a set 

of tasks (tasks 1 to 4 given below) for guiding the students through constructing the centres of a 

triangle.  

Task 1: Construct a triangle ABC in GeoGebra. Construct the perpendicular bisectors. What do you 

observe? Mark the circumcentre of ABC as O and hide the perpendicular bisectors. Write your 

observations after dragging any one vertex of the triangle. Does the circumcentre always lie inside 

the triangle? What happens when the triangle is (i) acute, (ii) obtuse, (iii) or scalene? 

Task 2: Construct the altitudes of triangle ABC. What do you observe? Mark the orthocentre of ABC 

as H and hide the altitudes.  Write your observations after dragging any one vertex of the triangle. 

Does the orthocentre always lie inside the triangle? What happens when the triangle is (i) acute, (ii) 

obtuse, (iii) or scalene? 

Task 3: Construct the medians of triangle ABC. What do you observe? Mark the centroid of ABC as 

G and hide the medians. Write your observations after dragging any one vertex of the triangle. Does 

the centroid always lie inside the triangle? What happens when the triangle is (i) acute, (ii) obtuse, 

(iii) or scalene? 

Task 4: Explore the relationships between O, H and G, that is, the circumcentre, orthocentre and 

centroid of triangle ABC by dragging the vertices. What is your observation? Measure OG and HG 

each time you drag the vertices of the triangle. What do you observe about these measurements? If 

you have reached a conclusion, how certain are you that you are correct. Present your arguments. 
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While attempting the first three tasks, about three – fourths of the students were able to construct the 

centres independently. The remaining students needed help to do the constructions on their respective 

GeoGebra screens. The teachers helped out with these students. After constructing each centre, 

students used the wandering dragging approach to make inferences as to whether these centres 

remained inside or outside the triangle. The variation caused by dragging the vertices of the triangle 

(making it acute, right, or obtuse) helped them to experience varying types of triangles and led them 

to make inferences regarding the location of the centres in each type of triangle. The simultaneous 

experience of the changing triangle and moving centres helped to arrive at conjectures. We see this 

as an example of fusion. Some argued, “the centroid is always inside…whether the triangle is acute, 

obtuse or right angled” and another observed, “the circumcentre remains inside only for an acute 

angled triangle”. “In a right angled triangle the orthocentre is the vertex of the right angle” etcetera.  

Once the three centres were constructed, task 4 appeared to proceed smoothly and was completed by 

all students. As students worked with all three centres simultaneously, they soon conjectured that 

these are collinear and constructed the Euler line. While dragging, they were able to separate out the 

collinearity of the three centres from other properties such as type of triangle or position of centre etc. 

We consider this ability to discern the collinearity of the three centres irrespective of the nature of the 

triangle as an example of separation. Thus, the variation experience caused by the dragging tool 

played a significant role in enabling students’ conjecture making regarding the Euler Line.  

After constructing the Euler’s Line, the researchers urged the students to explore what happens in 

specific cases, such as, if the triangle is equilateral, isosceles or scalene. Interestingly, at this point, 

about two thirds of the students were able to use the guided dragging approach to manipulate the 

vertices of the triangle to make it an equilateral triangle (or isosceles). The rest needed a bit of 

facilitation (in terms of dragging to make a specific kind of triangle) which was provided by the 

teachers as and when needed. Figure 2 shows some GeoGebra constructions generated by students. 

 

   (a)              (b) 

Figure 2.  Students’ investigation of Euler’s line for (a) an Isosceles triangle and (b) an equilateral triangle. 

 

The dragging tool enabled students to shift their focus from specific properties of the construction to 

general properties (such as collinearity of the centres leading to the Euler Line) and again from general 

to the specific (nature of the Euler line for specific types of triangles). Finally, after making 

conjectures related to the collinearity of the three centres leading to the Euler Line researchers 

scaffolded the students to prove their conjecture. 

 

4. Results: An analysis of students’ investigations 

In this section, we present a detailed analysis of students’ investigations as they explored the triangle 

centres leading to the emergence of the Euler Line.  
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4.1 DGE as an amplifier and reorganiser 

Research question 4 attempts to address the role of DGE as an amplifier or a reorganiser in students’ 

explorations of geometry tasks. In the Euler Line task, GeoGebra was the primary vehicle of 

exploration. Firstly, it served the purpose of a construction tool as students constructed the triangle 

and its centres. The constructions were accurate and it saved an enormous amount of time as 

performing the same constructions using a compass and ruler would have been very time consuming. 

Here the role of GeoGebra may be identified as that of an amplifier. However as students explored 

the rest of the task, making conjectures about the centres through dragging, the use of GeoGebra 

changed for the students. It shifted the students’ focus from construction process to that of looking 

for invariances, making and testing conjectures. GeoGebra thus also played the role of a reorganiser.  

The following conversation among three Swedish students reveal how they negotiated the capabilities 

of GeoGebra to make constructions, arrive at conjectures and communicate their findings. 

Student 1: Gee, this is hard. I do not understand the English here. This is what it says. The 

circumcentre is the centre of the circumcircle of a triangle. Hey, please check Google translate about 

what the circumcentre means. And what on earth is a circumcircle? What are we expected to do? 

Student 2: Right, here it is. You should first construct the midpoint of each side....and then construct 

a perpendicular line to that point and side.  Look here it is... 

Student 1: Okay, then what? 

Student 2:  Do it all the way around, do it for all sides of the triangle. Right, do you see that they all 

are intersecting at the same point? Here! Right click on that and label it O. This is apparently the 

midpoint for a circle. The other point for that circle is any of the vertices. Click over there... Yes! 

Cool! Let’s make a screen cast of that! 

After some trial and error attempts, they manage to make a construction fairly quickly and efficiently. 

Here we may say that GeoGebra is playing the role of an amplifier.  Student 3 who has been silent so 

far observes: 

Student 3: It seems that whatever we do to that triangle, the circle still exists. It means that every 

triangle always has a circumcircle even when we do not see it. It means that for every triangle you 

can think of or see, there are circles outside and inside and points of concurrency inside. It is so cool. 

I have never viewed triangles like this before.  

It appears that Student 3 is developing a sense of certain attributes of a triangle and is also observing 

invariances such as the existence of a circumcircle and points of concurrency. The dragging feature 

leads her to observe invariances amidst variation.  

Student 3: Look, if there is a circumcircle, there should be an inner circle to a triangle too? Right? 

Student 1: Maybe, but it is not in the task. 

Student 3: Look, here... I found it on the Internet. We should just divide the vertices angles in half 

and draw the segment to the opposite side. Let’s do it, please!     

Student 3 convinces Student 1 and Student 2 that it will be worth the extra minutes and she guides 

them to do the construction. There is a moment when they do not agree about the circumference point. 

Student 1: Look, it is not inscribed because it crosses the triangle. There is something wrong.  

Student 3: Yes, I got the wrong point. Look, you should use the perpendicular line from the centre 

point to each side and mark that intersection. Right... Now try again! Yes, there it is! It is so beautiful! 

Student 3 is affected by the richness of the triangle and she makes Student 1 colour it in a flashy way 

ensuring that her conjecture is proven. 
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Student 2: Can we please go on and construct the Euler line and do the measurements now, please? 

Student 1: Yes, and let’s do a last screen cast as well. 

Finally the group constructed segments and measured the ratio between the distances GO and HG, 

and succeeded in describing the relationship among the three centres as HG = 2OG. This was an 

empirical proof created by students based on their observations.  

This exploration would have been difficult to perform using compass and ruler as measurements are 

inaccurate and the process is also time consuming. The students revealed that they had a very positive 

impression of exploring the constructions in GeoGebra.  

It would be apt to say that the Euler Line exploration in GeoGebra led to learning of mathematical 

concepts outside the activity and opened up new possibilities. We may conclude that initially 

GeoGebra acted as an amplifier as students used it primarily for performing constructions but later it 

played the role of a reorganiser by enabling students to make conjectures and giving them access to 

higher-level concepts.  

Research question 2 attempts to explore the role played by a DGE in enabling the process of 

conjecture-making. The researcher (R) working with the Indian students observed that the dragging 

feature of GeoGebra helped students to make conjectures, which they might not have made in a paper-

pencil environment. Before working on the Euler line investigation each pair of students was required 

to construct triangle of given specifications using compass and ruler. Following this they had to 

construct the three centres of their triangle. This was done so that they could later compare the 

compass and ruler method of construction with the GeoGebra construction. R took rounds to help 

students with the construction process as and when needed. This part was time consuming since 

students faced difficulties in constructing all the centres in one diagram. Once they identified the three 

centres, they marked them on their diagram. Each pair of students had a different triangle. Some were 

acute angled scalene triangles, some were obtuse angled, and some right angled, isosceles and 

equilateral. Students were unable to make any conjecture simply by looking at their own triangles. 

They began to look at their neighbour’s triangles. Some did not get to see the circumcentre and 

orthocentre inside their triangle.   

Student: Teacher, in my triangle the circumcentre and orthocentre are not in the triangle. But in their 

triangle (he points to the neighbour) both lie inside. 

R: Can you explain why? Is your triangle different from theirs? 

This activity led to interesting discussions but no consensus was reached regarding what kind of 

triangles had the circumcentres or orthocentres inside or outside. Some students who had made 

accurate constructions found the three centres lying on a straight line.  

After this students attempted the worksheet tasks on GeoGebra.  They followed the instructions given 

in the worksheet, which ultimately led them to construct the circumcentre, followed by the 

orthocentre and the centroid.  

4.2 Conjecture through dragging 

As articulated in research question 1, the researchers wanted to know how students perceived 

GeoGebra constructions vis-à-vis paper and pencil constructions. A majority of the students felt that 

GeoGebra constructions were easier, more accurate and less time consuming than compass and ruler 

constructions. There were 18 out of 22 students able to conclude that the three perpendicular bisectors 

and the three altitudes were concurrent while all students were convinced about the concurrency of 

the three medians. A majority of the students were able to conjecture that the circumcentre lies inside, 

outside or on the hypotenuse if the triangle was acute angled, obtuse angled or right angled 

respectively. Similarly about two thirds of the students could make similar conjectures regarding the 
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orthocentre. In fact, they used wandering dragging as well as guided dragging approaches to discern 

invariances amidst variation and thus arrive at conjectures.  There were 21 students conjectured, after 

dragging the vertices of the triangle, that the three centres are collinear. Using the guided dragging 

approach, 10 of these students observed that in an equilateral triangle the three centres coincide, in 

an isosceles triangle these lies on a vertical line and in a scalene triangle it is difficult to say.  Figure 

3 shows the conclusions written by a student in her worksheet. This is an example of an empirical 

proof as described by Fiallo and Gutiérrez [4], where she describes the relation between the three 

centres. 

 

Figure 3: A student investigates the Euler’s line when the triangle is equilateral, isosceles or scalene. 

 

We would like to highlight here that such conjectures were not possible when the same task was 

attempted using compass and ruler. The explanation possibly lies in the absence of variation in this 

approach. Each pair of students had only one triangle and could make observations only based on it.  

However, there was no contrasting situation for them to observe.  

4.3 Empirical to deductive proof 

In this section, we shall try to elicit the students’ thinking as they transitioned from empirical to 

deductive proof as we attempt to address research question 3. 

4.3.1 Search for a conjecture and empirical proof 

In the GeoGebra task, about two thirds of the students were able to describe the relationship among 

the three centres as HG = 2 OG. The measurements of line segments in the Algebra view helped to 

arrive at this relation and develop an empirical proof. This would have been difficult to verify and 

conjecture using compass and ruler construction because of the inaccuracy of measurements and 

cluttered diagrams. Initially GeoGebra acted as an amplifier by enabling students to make quick and 

accurate constructions and later it functioned as a reorganiser as it facilitated their conjecture making. 

The comments of the students revealed that students had a very positive impression of exploring the 

problem in GeoGebra.  Some of them also expressed the desire of undergoing similar modules in 

other similar exploratory tasks. Figure 4 shows comments written by a student. 
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Figure 4: Students’ comment on the Euler line exploration reveal their positive attitude towards such explorations. 

 

At the end of the module students were required to develop a deductive proof for their conjecture 

regarding the collinearity of O, H and G. It was emphasized that the GeoGebra only helped to verify 

that the collinearity of the three centres and that this was not a deductive proof. The researcher tried 

to facilitate the process of developing a deductive proof and asked students to modify their GeoGebra 

constructions to obtain the following figure on their respective screens. See Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: GeoGebra figure used by Indian 9th graders to prove collinearity of O,G and H.  

 

4.3.2 Construction of deductive proof 

The line of proof was facilitated through a guided discovery approach. The researcher conducted a 

whole class discussion where they drew students’ attention to appropriate parts and properties of the 

figure, which were to be focused upon to develop the correct line of argument. An attempt was made 

to elicit students’ reasoning and scaffold them to develop a chain of arguments without giving away 

any answers. In order to prove the collinearity of the three centres, the circumcentre O and the centroid 

G of a triangle ABC were constructed. OG was then extended to a point H such that HG = 2 OG. It 

was now required to prove that H is indeed the orthocentre of triangle ABC. This led to a discussion 

among students and to steer the discussion the researcher asked them to focus on the triangles AHG 

and OGD. They observed that AG = 2 GD, since G is the centroid and divided the median AD in the 

ratio 2:1. Also HG = 2 OG by construction. They also concluded that angles ADH and OGD are equal 

(being vertically opposite angles). These students were not familiar with the idea of similarity 

although they had learnt about the SAS criterion of congruency of triangles. It was reinforced by the 

researcher that SAS is also a criteria of similarity of triangles and that all the sides of triangle AHG 

are twice the lengths of the corresponding sides of triangle OGD. They further concluded that the 

corresponding angles of AHG and ODG are equal (being angles of similar triangles). This implied 
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that AH is parallel to OD. Since OD is perpendicular to BC, it implied that AH, when extended is 

also perpendicular to BC and is therefore an altitude. Students further observed that dragging the 

vertices of triangle ABC did not alter the similarity of the triangles AHG and ODG. We see this as 

an example of separation as they were able to separate out the similarity of the triangles from other 

varying properties. The argument was extended by identifying the two triangles BHG and EOG and 

proving their similarity, which, finally led to the conclusion that BH when extended is also an altitude. 

Following the discussions students were required to write the formal proof in their worksheets. Figure 

6 shows the proof written by a student in her worksheet. 

 

Figure 6: Students’ written proof of the collinearity of the circumcentre, orthocentre and centroid of a triangle. 

Here we can see that the empirical proof of the conjecture (of collinearity of the three centres) was a 

stepping-stone to developing a deductive proof. However, as described above, developing the 

deductive proof required facilitation by the researchers.  

 

 

5. Discussion 

There is a vast amount of published research on the use of DGE in teaching and learning mathematics. 

In this article, we have focused on analysing grade 9 students’ explorations of a task in geometry 

form three perspectives. Firstly we have highlighted the dual role played by a DGE as an amplifier 

and reorganiser (research question 4), in supporting students’ geometrical investigations, in providing 

a variation experience (through the dragging tool) for making conjectures (research question 2) and 

finally in motivating argumentation and proof. Secondly, we have tried to do an in-depth analysis of 

students’ reasoning through the lens of the theory of variation. We feel that the four functions of 

variation, namely, contrast, generalisation, separation and fusion played a critical role in students’ 

conjecture-making and developing proof. Thirdly, we describe students’ transition in thinking as they 

progress from an empirical to a deductive proof (research question 3). 

Students’ perceptions suggest that GeoGebra offered many advantages in performing geometrical 

tasks over a paper-pencil environment. Firstly GeoGebra played the role of an amplifier in this study.  
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Students performed constructions quickly and they considered their GeoGebra constructions to be 

more accurate than compass and ruler constructions. Also when doing constructions, most students 

frequently used the algebra view to observe the properties of a given figure such as side lengths, angle 

measures, etc. Once the constructions were done, they moved away from measurements and focused 

on observing patterns, commonalities and invariances. Here GeoGebra acted as a reorganiser and 

played a key role in enabling students to make conjectures. We observed that for the 9th graders 

GeoGebra became a natural medium for their dynamical representations and facilitated their 

explorations helping them to identify invariant properties while performing the tasks. The ability to 

simultaneously see the changing measurements in the algebra view along with the change in the figure 

is a very powerful feature of a DGE, which has no competing counterpart in a paper-pencil 

environment. According to Leung [9] 

DGE is rooted in variation in its design. It is a milieu where mathematical concepts can 

be given dynamic visual forms subject to our action. 

As a reorganiser, GeoGebra offered many possibilities throughout the task. It created a natural context 

for giving students access to higher-level mathematical concepts. For example, in an earlier section 

we saw how the Swedish students tried to explore the concept of incircle although it was not an 

assigned task. While attempting to prove the collinearity of the three centres, the Indian students were 

introduced to the idea of similarity of triangles, as an extension of their understanding of congruency. 

In the square construction task, we saw evidence of all four functions of variation in enabling students 

to arrive at a robust square. The contrast between the manually adjusted square and a constructed 

square helped students to focus on and separate out the fundamental properties of the square. 

Dragging helped them to experience varying appearances of a square and generalise the concept. 

In the Euler line exploration task, students used wandering dragging to conjecture whether the three 

centres remained inside the triangle or went outside for certain types of triangles. The simultaneous 

experience of the changing triangle and moving centres helped them to make conjectures about the 

location of centres for specific types of triangles. This is an example of fusion. Further, while 

dragging, they were able to discern the collinearity of the three centres irrespective of the nature of 

the triangle and this is an example of separation.  After making the conjecture about the Euler Line, 

they used guided dragging to explore what happened to the Euler line for special cases such as an 

equilateral or an isosceles triangle. 

Students agreed that figures drawn in a DGE are easier to draw, and once drawn they “react to the 

manipulations of the user following the laws of geometry”. In fact, they were able to manipulate their 

GeoGebra figures (the hide and unhide features were frequently used) and also rectify errors easily. 

Thus, the transient nature of the DGE provided an additional advantage as a working tool vis-à-vis 

paper and pencil.  

While proving the collinearity of the three centres, students first used their observations from the 

algebra view to develop an empirical proof that HG = 2OG. However, to lead them from empirical 

to deductive proof, the researchers had to facilitate by helping students to create an appropriate figure 

in GeoGebra (such as Figure 5).  This helped them to observe that the similarity of the two triangles 

GAH and GOD remained invariant even as the vertices of the triangle were dragged. Here separation 

as a function of variation played a key role in helping them visualise the similarity of the triangles. 

The researchers were surprised to find that Swedish students who are generally not exposed to 

mathematical proof in grade 9, attempted to strive for correctness and rigor while exploring the 

triangle centres. In various instances they engaged in argumentation and reasoning even when they 

were not prompted to do so. This supports the observation by Bruckheimer & Arcavi [2] 
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While dynamic geometry software cannot actually produce proofs, the experimental evidence 

it provides users with produces strong conviction, which can motivate the desire for proof. 

(King & Schattschneider, 1997, p. xiii) 

Thus, while conjectures and empirical proofs in GeoGebra set the stage for deductive proof, when it 

came to actually developing a deductive proof, students needed scaffolding.  The researchers had to 

prompt students to create a chain of logical arguments, which would ultimately lead to proof. The 

nature of facilitation provided was a whole class discussion in which a guided discovery approach 

was followed wherein students were given the appropriate prompts to develop a logical sequence of 

arguments. 

This kind of work, namely, experimentation with geometrical constructions leading to deductive 

proof, is probably something very rare and unusual in both India and Sweden at the compulsory 

school level. Nevertheless, students of both countries attempted the tasks with ease in GeoGebra and 

arrived at similar conjectures. Both Indian as well as Swedish students seemed to appreciate their 

mathematical experience during the study and the researchers were almost stunned by the speed with 

which they students picked up the constructions possibilities in GeoGebra. Our findings actually show 

that you most likely can take average students in compulsory school and ask them to do geometrical 

constructions they haven’t seen before and they will do it, and they most likely will make conjectures 

and draw conclusions along the way.   

Further, the researchers in both countries observed that the process of developing deductive proof 

from an empirical one became a natural transition for the 9th graders. The relevant factors facilitating 

this transition were the DGS environment, which helped students to discover and verify conjectures, 

as well as the teaching methodology and facilitation, which promoted discussion and asked students 

for justifications of their arguments.  In the process of writing the proof, however, GeoGebra’s role 

was restricted. Here they converted their observations/verifications (made using GeoGebra) to a 

sequence of logical arguments, which then led to the final proof. In the process of writing the proof, 

some facilitation was provided by the researchers.  

The process of proving the collinearity of the three centres of a triangle led to the proof similarity of 

triangles. This enabled the researcher to facilitate a discussion on similarity of triangles and help 

students figure out the different criteria for similarity. Typically the topic of similarity of triangles is 

a part of the curriculum of grade 10 and hence the exploration of triangle centres familiarised students 

with concepts beyond their traditional syllabus. Here too the researchers observed that the DGE 

played an important role of a reorganiser in shaping their concept of similarity as it quickened the 

process of making and verifying conjectures. However when it came to formal argumentation and 

proof (such as proving that H is the orthocentre or that the nine points lie on a circle) students referred 

to their GeoGebra figures but wrote their arguments on paper with some facilitation by the researcher. 

The interaction with students reveals that the DGE helped to make and verify conjectures. It also led 

to a ‘need for proof’ of different results, which students were encountering for the first time. The 

DGE appeared to provide a motivation for posing formal arguments leading to a proof, which in 

general seems to be missing in traditional classrooms. Thus the process of ‘finding a proof’ seemed 

to be a natural extension of the process of making conjectures.  

In the Results section we observed how Student 3 developed a much broader image of what a triangle 

is or might be and perhaps experienced an ‘ontological shift’, a sudden ability to see a familiar object, 

the triangle, in a new light and with completely new qualities. Actually it moved her to deepen the 

investigation. Once again GeoGebra played the role of an amplifier.  

Thus we may conclude that throughout the Euler Line exploration GeoGebra played the role of an 

amplifier as well as a reorganiser. In the initial tasks, students focused on constructions (medians, 

altitudes and perpendicular bisectors) and identified the centroid, orthocentre and the circumcentre of 
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the triangle. These constructions were performed quickly, were accurate and dynamic in nature. 

During this process GeoGebra played the role of an amplifier. After this, students moved away from 

the construction process and began to look for patterns, focus on invariances and make conjectures. 

Here GeoGebra played the role of a reorganiser by increasing the possibilities for exploration.  

As we analyse students’ explorations and reasoning closely, we see evidence of the four functions of 

variation. Wandering dragging and guided dragging led students to make conjectures. By the end of 

the third session of this activity, we had witnessed a panoramic view of students’ thinking. 

Finally it would be apt to say that the 9th grade students in both India and Sweden learned new 

geometry while taking part in this study. They also learned to use GeoGebra as a medium for 

exploring geometrical problems, which is likely to be beneficial in their future learning and study of 

mathematics. It may be appropriate to say that the use of GeoGebra led to a satisfying combination 

of technology use and engagement with logical reasoning. The results of the study were illuminating 

for the teachers (of both countries whose students had participated in the study) as well as the 

researchers. The teachers realised that their students were quite comfortable with GeoGebra and the 

new dynamic environment enable students to do geometrical explorations far beyond the level of 

grade 9. The researchers were highly encouraged by the results as they could see how GeoGebra had 

empowered the students by giving them access to higher-level concepts while exploring geometrical 

problems and thus develop their mathematical thinking. 
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